THE SHARP RAZOR:
Deflating the Sharpe Ratio by asking for a Minimum Track Record Length

Marcos López de Prado

Hess Energy Trading Company

Lawrence Berkeley National Laboratory
Key Points

• Because the Sharpe ratio only takes into account the first two moments, it wrongly “translates” skewness and excess kurtosis into standard deviation.

• As a result,
 – It deflates the skill measured on “well-behaved” investments (positive skewness, negative excess kurtosis).
 – It inflates the skill measure on “badly-behaved” investments (negative skewness, positive excess kurtosis).

• Sharpe ratio estimates need to account for Higher Moments, even if you assume that investors only care about two moments (Markowitz framework)!
SECTION I
The Mean-Variance framework
Markowitz introduced “Modern Portfolio Theory” in his 1952 paper “Portfolio Selection” [Journal of Finance].

Among other assumptions:
- Investors are rational and risk-averse.
- Investors are only sensitive to the first two moments, thus the name “Mean-Variance Optimization” (MVO).
- Future Mean and Variance can be exactly predicted.
The Sharpe ratio (1/2)

• Sharpe (1975) applied Markowitz’s mean-variance framework to the evaluation of investment performance [Journal of Portfolio Management].

• Suppose that a strategy’s excess returns (or risk premiums), \(r_t \), are IID

\[
r \sim N(\mu, \sigma^2)
\]

where \(N \) represents a Normal distribution with mean \(\mu \) and variance \(\sigma^2 \). The purpose of the Sharpe ratio (SR) is to evaluate the skills of a particular strategy or investor.

\[
SR = \frac{\mu}{\sigma}
\]
The Sharpe ratio (2/2)

• What is the idea behind computing the ratio of excess returns and standard deviation?
• There are two interpretations:

• **Mathematical:** The standard deviation measures “dispersion” around the mean. The more dispersion, the more uncertainty regarding the outcomes.

• **Financial:** It is a “return on risk”, rather than a “return on capital”. The Sharpe ratio is invariant to scale changes, hence to leverage (as long as it is kept constant for each investment).
Introducing Confidence

• One of the problems with this approach is that Mean and Variance are usually unknown. Thus, the true value of SR cannot be know for certain.

• Applying the Central Limit Theorem, Lo (2002) derived the Sharpe ratio’s confidence band assuming that the returns are IID Normal [Financial Analysts Journal].

• Asymptotically, the estimated \hat{SR} converges to

\[
(\hat{SR} - SR) \xrightarrow{a} N \left(0, \frac{1 + \frac{1}{2}SR^2}{n}\right)
\]

where n is the number of observations.
SECTION II
Relaxing the Model’s Assumptions
Dropping the Normality Assumption

• Mertens (2002) proves that the Normality assumption on returns could be dropped, and still the estimated Sharpe ratio converges to a Normal distribution with parameters

\[
(\hat{SR} - SR) \xrightarrow{a} N \left(0, \frac{1 + \frac{1}{2}SR^2 - \gamma_3 SR + \frac{\gamma_4 - 3}{4}SR^2}{n} \right)
\]

• Note how the signs associated with the moments make sense!: The variance of Sharpe ratios increases with negative skewness and positive excess kurtosis.

• **Conclusion 1**: SR follows a Normal distribution, even if the returns do not.
Introducing Higher Moments

• Higher Moments (e.g., Skewness and Kurtosis) do not affect the point estimate of SR.

• However, Skewness and Kurtosis greatly impact the confidence bands of SR.
• Mixtures of Two Gaussians produce an infinite number of Non-Normal distributions, all with the same Sharpe ratio (e.g., $\tilde{SR} = 1$).
• High readings of SR may come from extremely risky distributions, like negative skewness and positive kurtosis.
Beyond the 4th moment (kurtosis):

- Estimates become very inaccurate.
- There isn’t a good theoretical explanation as to their meaning.

Here we plot the True value vs. the Estimated value (using 1,000 observations per estimate) for 4 moments on 96,551 Mixtures of two Gaussians ($SR^* = 1$).
Dropping the IID Assumption

• Mertens (2002) originally assumed IID returns.

• Christie (2005) uses a GMM approach to derive a limiting distribution that
 – Only assumes Stationary and Ergodic returns.
 – Allows for time-varying conditional volatilities, serial correlation (non-IID returns).

• Surprisingly, Opdyke (2007) proved that the expressions in Mertens (2002) and Christie (2005) are equivalent!

• **Conclusion 2:** Mertens’ result is valid under the more general assumption of *stationary and ergodic returns*, and not only IID.
Portfolio choice with Higher Moments

• Markowitz assumed that the investor’s utility function only cares about Mean and Variance.
• Unfortunately, the confidence around Mean and Variance estimates are affected by returns’ Non-Normality.
• Thus, the confidence around Sharpe ratio estimates is also affected by Higher Moments.
• Conclusion 3: Sharpe ratio estimates need to account for Higher Moments, even in a Markowitz setting!
• Hedge Funds’ Sharpe ratios are typically inflated by negative skewness and positive excess kurtosis (Brooks and Kat, (2002), Ingersoll et al. (2007)).
SECTION III
Probabilistic Sharpe Ratio
• We can use Merten’s great result to redefine Sharpe ratio, in a probabilistic way.

• Bailey and López de Prado (2012) derive the expression

\[
\hat{PSR}(SR^*) = Z \left[\frac{(\hat{SR} - SR^*)\sqrt{n - 1}}{\sqrt{1 - \hat{\gamma}_3 \hat{SR} + \frac{\hat{\gamma}_4 - 1}{4} \hat{SR}^2}} \right]
\]

where \(Z\) is the \textit{cdf} of the Standard Normal distribution and \(SR^*\) is a user-defined benchmark SR value.

• Conclusion 4: PSR computes with what probability the estimated \(\hat{SR}\) beats a benchmark \(SR^*\), after correcting for skewness and kurtosis.
Example of SR vs. PSR (1/2)

• Suppose a fund with the following statistics over a two years sample of monthly returns:

<table>
<thead>
<tr>
<th>Stats</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.036</td>
</tr>
<tr>
<td>StDev</td>
<td>0.079</td>
</tr>
<tr>
<td>Skew</td>
<td>-2.448</td>
</tr>
<tr>
<td>Kurt</td>
<td>10.164</td>
</tr>
<tr>
<td>SR</td>
<td>0.458</td>
</tr>
<tr>
<td>Ann. SR</td>
<td>1.585</td>
</tr>
</tbody>
</table>

At first sight, an annualized Sharpe ratio of 1.59 over the last two years seems high enough to reject the hypothesis that it has been achieved by sheer luck.

• The question is, “how inflated is this annualized Sharpe ratio due to the track record’s non-normality, length and sampling frequency?”
The Non-Normal dist. is consistent with the fund’s stats. The Normal dist. has the same Sharpe ratio estimate (1.59). However, the confidence around these two \hat{SR} estimates is very different:

- Normal: $\sigma_{\hat{SR}} = 0.22$
- Non-Normal: $\sigma_{\hat{SR}} = 0.34$

A rational investor would prefer the fund with Normal returns, because it delivers the same Sharpe ratio with greater confidence.

PSR incorporates this confidence information by estimating the probability that the estimated \hat{SR} is in reality greater than a given benchmark value, SR^*. For example, for $SR^* = 0$ (skill-less benchmark), $P_{SR}(0) = 0.982$ for the Normal dist. fund, compared to $P_{SR}(0) = 0.913$ for the Non-Normal dist. fund.
SECTION IV
Minimum Track Record Length
The previous example was not meant to imply that a track record of 1.59 Sharpe ratio is “insignificant”.

As a matter of fact, should we have 3 years instead of 2, $\widehat{PSR}(0) = 0.953$, typically enough to reject the hypothesis of skill-less performance... even after accounting for skewness and kurtosis!

In other words, a longer track record may be able to compensate for the uncertainty introduced by non-Normal returns.

How can we formulate that “compensation effect” between non-Normality and the track record’s length?
Minimum Track Record Length (MinTRL)

- Question: “How long should a track record be in order to have statistical confidence that its Sharpe ratio is above a given threshold?”
- Bailey and López de Prado (2012) computed the answer:
 \[MinTRL = 1 + \left[1 - \hat{\gamma}_3 \hat{SR} + \frac{\hat{\gamma}_4 - 1}{4} \hat{SR}^2 \right] \left(\frac{Z_\alpha}{\hat{SR} - SR^*} \right)^2 \]
- Conclusion 5: A longer track record will be required if
 - smaller \(\hat{SR} \) is, or
 - the more negatively skewed returns are, or
 - the greater the fat tails, or the greater our required level of confidence.
SECTION V
Numerical Examples
MinTRL for a Daily IID Normal returns

- Minimum track record lengths (MinTRL) in years required for various combinations of measured \hat{SR} (rows) and benchmarked SR^* (columns) at a 95% confidence level, based upon daily IID Normal returns.

For example, a 2.73 years track record is required for an annualized Sharpe of 2 to be considered greater than 1 at a 95% confidence level.
MinTRL for a Weekly IID Normal returns

- Minimum track record lengths (MinTRL) in years required for various combinations of measured \tilde{SR} (rows) and benchmarked SR^* (columns) at a 95% confidence level, based upon *weekly* IID Normal returns.

<table>
<thead>
<tr>
<th>Observed Sharpe</th>
<th>True Sharpe Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>10.87</td>
</tr>
<tr>
<td>0.5</td>
<td>2.75</td>
</tr>
<tr>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td>1.5</td>
<td>0.72</td>
</tr>
<tr>
<td>2</td>
<td>0.48</td>
</tr>
<tr>
<td>2.5</td>
<td>0.35</td>
</tr>
<tr>
<td>3</td>
<td>0.27</td>
</tr>
<tr>
<td>3.5</td>
<td>0.21</td>
</tr>
<tr>
<td>4</td>
<td>0.18</td>
</tr>
<tr>
<td>4.5</td>
<td>0.15</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

For example, a **2.83** years track record is required for an annualized Sharpe of 2 to be considered greater than 1 at a 95% confidence level.
MinTRL for a Monthly IID Normal returns

- Minimum track record lengths (MinTRL) in years required for various combinations of measured \hat{SR} (rows) and benchmarked SR^* (columns) at a 95% confidence level, based upon *monthly* IID Normal returns.

For example, a **3.24** years track record is required for an annualized Sharpe of 2 to be considered greater than 1 at a 95% confidence level.
MinTRL for a Monthly IID Non-Normal returns

- Minimum track record lengths (MinTRL) in years required for various combinations of measured \hat{SR} (rows) and benchmarked SR^* (columns) at a 95% confidence level, based upon monthly IID with $\hat{\gamma}_3 = -0.72$, $\hat{\gamma}_4 = 5.78$.

For example, a 4.99 years track record is required for an annualized Sharpe of 2 to be considered greater than 1 at a 95% confidence level.
SECTION VI
Skillful Hedge Fund Styles
Which Hedge Fund Styles are skillful?

- Conclusion 6: After adjusting for skewness and kurtosis, only a few hedge fund styles deliver performance beyond what would be expected by sheer luck.

<table>
<thead>
<tr>
<th>HFR Index</th>
<th>Code</th>
<th>SR</th>
<th>StDev(SR)</th>
<th>An. SR</th>
<th>Low An. SR</th>
<th>PSR(0)</th>
<th>PSR(0.5)</th>
<th>MinTRL (0)</th>
<th>MinTRL (0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conserv</td>
<td>HFRIFOFC Index</td>
<td>0.251</td>
<td>0.116</td>
<td>0.871</td>
<td>0.210</td>
<td>0.985</td>
<td>0.822</td>
<td>6.456</td>
<td>35.243</td>
</tr>
<tr>
<td>Conv Arbit</td>
<td>HFRICAI Index</td>
<td>0.253</td>
<td>0.124</td>
<td>0.875</td>
<td>0.170</td>
<td>0.979</td>
<td>0.809</td>
<td>7.282</td>
<td>39.246</td>
</tr>
<tr>
<td>Dist Secur</td>
<td>HFRIDSI Index</td>
<td>0.414</td>
<td>0.116</td>
<td>1.433</td>
<td>0.771</td>
<td>1.000</td>
<td>0.990</td>
<td>2.448</td>
<td>5.661</td>
</tr>
<tr>
<td>Divers</td>
<td>HFRIFOFD Index</td>
<td>0.208</td>
<td>0.099</td>
<td>0.719</td>
<td>0.158</td>
<td>0.982</td>
<td>0.740</td>
<td>6.841</td>
<td>72.870</td>
</tr>
<tr>
<td>EM Asia</td>
<td>HFRIEMA Index</td>
<td>0.200</td>
<td>0.092</td>
<td>0.691</td>
<td>0.168</td>
<td>0.985</td>
<td>0.726</td>
<td>6.423</td>
<td>82.857</td>
</tr>
<tr>
<td>EM Global</td>
<td>HFRIEMG Index</td>
<td>0.258</td>
<td>0.100</td>
<td>0.892</td>
<td>0.325</td>
<td>0.995</td>
<td>0.872</td>
<td>4.559</td>
<td>23.242</td>
</tr>
<tr>
<td>EM Latin Amer</td>
<td>HFRIEMLA Index</td>
<td>0.173</td>
<td>0.093</td>
<td>0.598</td>
<td>0.068</td>
<td>0.968</td>
<td>0.620</td>
<td>8.782</td>
<td>323.473</td>
</tr>
<tr>
<td>Emerg Mkt</td>
<td>HFRIEM Index</td>
<td>0.259</td>
<td>0.100</td>
<td>0.896</td>
<td>0.324</td>
<td>0.995</td>
<td>0.873</td>
<td>4.602</td>
<td>23.214</td>
</tr>
<tr>
<td>Equity Hedge</td>
<td>HFRIEHI Index</td>
<td>0.196</td>
<td>0.092</td>
<td>0.681</td>
<td>0.158</td>
<td>0.984</td>
<td>0.715</td>
<td>6.608</td>
<td>92.752</td>
</tr>
<tr>
<td>Equity Neutral</td>
<td>HFRIEMNI Index</td>
<td>0.413</td>
<td>0.099</td>
<td>1.432</td>
<td>0.866</td>
<td>1.000</td>
<td>0.997</td>
<td>1.817</td>
<td>4.176</td>
</tr>
<tr>
<td>Event Driven</td>
<td>HFRIEDI Index</td>
<td>0.348</td>
<td>0.108</td>
<td>1.205</td>
<td>0.589</td>
<td>0.999</td>
<td>0.970</td>
<td>2.982</td>
<td>8.548</td>
</tr>
<tr>
<td>Fixed Asset-Back</td>
<td>HFRIFIMB Index</td>
<td>0.657</td>
<td>0.153</td>
<td>2.276</td>
<td>1.405</td>
<td>1.000</td>
<td>1.000</td>
<td>1.706</td>
<td>2.749</td>
</tr>
<tr>
<td>Fixed Hig</td>
<td>HFRIFIHY Index</td>
<td>0.283</td>
<td>0.120</td>
<td>0.980</td>
<td>0.294</td>
<td>0.991</td>
<td>0.875</td>
<td>5.513</td>
<td>22.716</td>
</tr>
<tr>
<td>Fund of Funds</td>
<td>HFRIFOF Index</td>
<td>0.213</td>
<td>0.099</td>
<td>0.739</td>
<td>0.174</td>
<td>0.984</td>
<td>0.757</td>
<td>6.560</td>
<td>61.984</td>
</tr>
<tr>
<td>Macro</td>
<td>HFRIMI Index</td>
<td>0.381</td>
<td>0.087</td>
<td>1.320</td>
<td>0.824</td>
<td>1.000</td>
<td>0.997</td>
<td>1.649</td>
<td>4.138</td>
</tr>
<tr>
<td>Mkt Defens</td>
<td>HFRIFOMF Index</td>
<td>0.388</td>
<td>0.087</td>
<td>1.343</td>
<td>0.847</td>
<td>1.000</td>
<td>0.997</td>
<td>1.596</td>
<td>3.922</td>
</tr>
<tr>
<td>Mrg Arbit</td>
<td>HFRIMAI Index</td>
<td>0.496</td>
<td>0.112</td>
<td>1.717</td>
<td>1.080</td>
<td>1.000</td>
<td>0.999</td>
<td>1.611</td>
<td>3.124</td>
</tr>
<tr>
<td>Multi-Strategy</td>
<td>HFRIF Index</td>
<td>0.361</td>
<td>0.138</td>
<td>1.252</td>
<td>0.468</td>
<td>0.996</td>
<td>0.943</td>
<td>4.426</td>
<td>12.118</td>
</tr>
<tr>
<td>Priv/Regulation</td>
<td>HFRIREGD Index</td>
<td>0.225</td>
<td>0.082</td>
<td>0.780</td>
<td>0.312</td>
<td>0.997</td>
<td>0.837</td>
<td>4.082</td>
<td>31.061</td>
</tr>
<tr>
<td>Quant Direct</td>
<td>HFRIVENHI Index</td>
<td>0.146</td>
<td>0.090</td>
<td>0.506</td>
<td>-0.005</td>
<td>0.948</td>
<td>0.508</td>
<td>11.400</td>
<td>77398.739</td>
</tr>
<tr>
<td>Relative Value</td>
<td>HFRIRVA Index</td>
<td>0.470</td>
<td>0.163</td>
<td>1.630</td>
<td>0.702</td>
<td>0.998</td>
<td>0.972</td>
<td>3.676</td>
<td>7.561</td>
</tr>
<tr>
<td>Russia-East Euro</td>
<td>HFRICIS Index</td>
<td>0.278</td>
<td>0.104</td>
<td>0.964</td>
<td>0.369</td>
<td>0.996</td>
<td>0.900</td>
<td>4.303</td>
<td>18.285</td>
</tr>
<tr>
<td>Sec Energy</td>
<td>HFRISEN Index</td>
<td>0.278</td>
<td>0.094</td>
<td>0.963</td>
<td>0.427</td>
<td>0.998</td>
<td>0.922</td>
<td>3.522</td>
<td>14.951</td>
</tr>
<tr>
<td>Sec Techno</td>
<td>HFRISTI Index</td>
<td>0.067</td>
<td>0.086</td>
<td>0.231</td>
<td>-0.261</td>
<td>0.780</td>
<td>0.184</td>
<td>50.420</td>
<td>n/a</td>
</tr>
<tr>
<td>Short Bias</td>
<td>HFRISHSE Index</td>
<td>0.043</td>
<td>0.086</td>
<td>0.148</td>
<td>-0.344</td>
<td>0.690</td>
<td>0.120</td>
<td>122.495</td>
<td>n/a</td>
</tr>
<tr>
<td>Strategic</td>
<td>HFRISOF Index</td>
<td>0.149</td>
<td>0.091</td>
<td>0.517</td>
<td>-0.004</td>
<td>0.949</td>
<td>0.521</td>
<td>11.348</td>
<td>10935.740</td>
</tr>
<tr>
<td>Sys Diversified</td>
<td>HFRIMTI Index</td>
<td>0.316</td>
<td>0.085</td>
<td>1.094</td>
<td>0.610</td>
<td>1.000</td>
<td>0.978</td>
<td>2.252</td>
<td>7.434</td>
</tr>
<tr>
<td>Wgt Comp</td>
<td>HFRIFWI Index</td>
<td>0.287</td>
<td>0.097</td>
<td>0.994</td>
<td>0.441</td>
<td>0.998</td>
<td>0.929</td>
<td>3.515</td>
<td>13.974</td>
</tr>
<tr>
<td>Wgt Comp CHF</td>
<td>HFRIFWIC Index</td>
<td>0.229</td>
<td>0.088</td>
<td>0.792</td>
<td>0.291</td>
<td>0.995</td>
<td>0.831</td>
<td>4.513</td>
<td>32.660</td>
</tr>
<tr>
<td>Wgt Comp GBP</td>
<td>HFRIFWIG Index</td>
<td>0.181</td>
<td>0.093</td>
<td>0.626</td>
<td>0.097</td>
<td>0.974</td>
<td>0.653</td>
<td>7.986</td>
<td>194.050</td>
</tr>
<tr>
<td>Wgt Comp GBP</td>
<td>HFRIFWIG Index</td>
<td>0.181</td>
<td>0.093</td>
<td>0.626</td>
<td>0.097</td>
<td>0.974</td>
<td>0.653</td>
<td>7.986</td>
<td>194.050</td>
</tr>
<tr>
<td>Wgt Comp JPY</td>
<td>HFRIFWJJ Index</td>
<td>0.167</td>
<td>0.090</td>
<td>0.580</td>
<td>0.065</td>
<td>0.968</td>
<td>0.601</td>
<td>8.805</td>
<td>459.523</td>
</tr>
<tr>
<td>Yld Alternative</td>
<td>HFRISRE Index</td>
<td>0.310</td>
<td>0.108</td>
<td>1.073</td>
<td>0.456</td>
<td>0.998</td>
<td>0.937</td>
<td>3.748</td>
<td>12.926</td>
</tr>
</tbody>
</table>

- Distressed Securities
- Equity Market Neutral
- Event Driven
- Fixed Asset-Backed
- Macro
- Market Defensive
- Mortgage Arbitrage
- Relative Value
- Systematic Diversified
SECTION VII
The Sharpe Ratio Efficient Frontier
A new investment paradigm (1/4)

• Following Markowitz (1952), a portfolio w belongs to the Efficient Frontier if it delivers maximum expected excess return on capital ($E[r_w]$) subject to the level of uncertainty surrounding those portfolios’ excess returns ($\hat{\sigma}_{(r_w)}$).

$$\max_w E[r_w] \mid \hat{\sigma}_{(r_w)} = \sigma^*$$
A new investment paradigm (2/4)

• Similarly, we define what we denote the **Sharpe ratio Efficient Frontier (SEF)** as the set of portfolios \(\{w\} \) that deliver the highest expected excess return on risk (as expressed by their Sharpe ratios) subject to the level of uncertainty surrounding those portfolios’ excess returns on risk (the standard deviation of the Sharpe ratio).

\[
\max_w \left(\hat{SR}(rw) \right) | \hat{\sigma}_{SR}(rw) = \sigma^*
\]
A new investment paradigm (3/4)

- The Sharpe ratio Efficient Frontier (SEF) is derived in terms of optimal mean-variance combinations of risk-adjusted returns.

The portfolio at the right end of the SEF is the traditional Maximum Sharpe ratio portfolio. It delivers a greater mean SR, however at a much lower confidence.
A new investment paradigm (4/4)

- We can compute the capital allocations that deliver maximum Sharpe ratios for each confidence level.

The key difference with Markowitz’s Efficient Frontier is that SEF is computed on risk-adjusted returns, rather than returns on capital.
Computing the PSR Optimal Portfolio (1/2)

• For example, this is the optimal PSR capital allocation that results from using the HFR database (01/01/00-05/01/11).

<table>
<thead>
<tr>
<th>HFR Index</th>
<th>Code</th>
<th>Max PSR</th>
<th>Max SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dist Secur</td>
<td>HFRIDSI Index</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Equity Neutral</td>
<td>HFRIEMNI Index</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>Event Driven</td>
<td>HFRIEDI Index</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fixed Asset-Back</td>
<td>HFRIFIMB Index</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Macro</td>
<td>HFRIMI Index</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>Mkt Defens</td>
<td>HFRIFOFM Index</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>Mrg Arbit</td>
<td>HFRIMAI Index</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Relative Value</td>
<td>HFRIRVA Index</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sys Diversified</td>
<td>HFRIMTI Index</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Max PSR solution is preferable:

• Although it delivers a lower Sharpe ratio than the *Max SR* portfolio (0.708 vs. 0.818 in monthly terms), its better diversified allocations allow for a much greater confidence (0.103 vs. 0.155 standard deviations).

• *Max PSR* invests in 5 styles, and the largest holding is 30%, compared to the 4 styles and 50% maximum holding of the *Max SR* portfolio.
Computing the PSR Optimal Portfolio (2/2)

- *Max PSR* is very close to Normal (left figure), while the *Max SR* portfolio features a risky left fat-tail (right figure).

- **Conclusion 7:** Taking into account higher moments has allowed us to *naturally* find a better balanced portfolio that is optimal in terms of uncertainty-adjusted SR.
SECTION VIII
Conclusions
Conclusions (1/2)

1. SR follows a Normal distribution, even if the returns do not.

2. Mertens’ result is valid under the more general assumption of stationary and ergodic returns, and not only IID.

3. Sharpe ratio estimates need to account for Higher Moments, even in a Markowitz setting!

4. PSR computes with what probability the estimated \hat{SR} beats a benchmark SR^*, after correcting for skewness and kurtosis.
Conclusions (2/2)

5. A longer track record will be required the
 – smaller \overline{SR} is, or
 – the more negatively skewed returns are, or
 – the greater the fat tails, or the greater our required level of confidence.

6. After adjusting for skewness and kurtosis, only a few hedge fund styles deliver performance beyond what would be expected by sheer luck.

7. Taking into account higher moments has allowed us to naturally find a better balanced portfolio that is optimal in terms of uncertainty-adjusted SR.
THANKS FOR YOUR ATTENTION!
SECTION IX
The stuff nobody reads
Bibliography (1/3)

Bibliography (2/3)

Bibliography (3/3)

Marcos López de Prado is Head of Quantitative Trading & Research at Hess Energy Trading Company, the trading arm of Hess Corporation, a Fortune 100 company. Before that, Marcos was Head of Global Quantitative Research at Tudor Investment Corporation, where he also led High Frequency Futures Trading and several strategic initiatives. Marcos joined Tudor from PEAK6 Investments, where he was a Partner and ran the Statistical Arbitrage group at the Futures division. Prior to that, he was Head of Quantitative Equity Research at UBS Wealth Management, and a Portfolio Manager at Citadel Investment Group. In addition to his 15+ years of investment management experience, Marcos has received several academic appointments, including Postdoctoral Research Fellow of RCC at Harvard University, Visiting Scholar at Cornell University, and Research Affiliate at Lawrence Berkeley National Laboratory (U.S. Department of Energy’s Office of Science). He holds a Ph.D. in Financial Economics (Summa cum Laude, 2003), a Sc.D. in Mathematical Finance (Summa cum Laude, 2011) from Complutense University, is a recipient of the National Award for Excellence in Academic Performance by the Government of Spain (National Valedictorian, Economics, 1998), and was admitted into American Mensa with a perfect score.

Marcos is a scientific advisor to Enthought's Python projects (NumPy, SciPy), and a member of the editorial board of the Journal of Investment Strategies (Risk Journals). His research has resulted in three international patent applications, several papers listed among the most read in Finance (SSRN), publications in the Review of Financial Studies, Journal of Risk, Journal of Portfolio Management, etc. His current Erdös number is 3, with a valence of 2.
Disclaimer

• The views expressed in this document are the authors’ and do not necessarily reflect those of Hess Energy Trading Company or Hess Corporation.
• No investment decision or particular course of action is recommended by this presentation.
• All Rights Reserved.
Notice:

The research contained in this presentation is the result of a continuing collaboration with

Dr. David H. Bailey, LBNL

The full paper is available at:
http://ssrn.com/abstract=1821643

For additional details, please visit:
http://ssrn.com/author=434076
www.QuantResearch.info