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Introduction to quantitative equity investing
Quants look at factors

o} A factor is simply a systematic way of ranking (and selecting) stocks. It could be as simple as value (e.g.,
P/E) or momentum (e.g., past 12-month returns).

How do we know itbds a good f act or €heapstocks are (almost) always good
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The turnover is not too bad And you dondét need to trade it ever

Earnings yield, forecast FY1 mean Earnings yield, forecast FY1 mean, Long/short quantile portfolio return decay
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But then the 2008 financial crisis changed everything

(maybe forever)

The profit from a simple value strategy has fallen by 2/3

Momentum has been even more challenging

Earnings yield, forecast FY1 mean
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And learn to live in a macro dominated environment
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That 6s why we need new factors
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Seven sins of quantitative investing

DB Quant Handbook, Part Il

o} The rapid rise of computing power and wide availability of
off-the-shelf backtesting software provided by many data
vendors have given the impression that quant investing is
easy, or is it?

o} In this paper, we discuss the seven common mistakes
investors tend to make when they perform backtesting
and build quant models. Some of these may be familiar to
our readers, but nonetheless, you may be surprised to
see the impact of these biases. The other sins are so
commonpl ace i n both
research that we usually take them for granted.

o} There are a few unique features in this research that we
have not seen in other places. We deliberate when to and
when not to remove outliers; discuss various data
normalization techniques; address the intricate issues of
signal decay, turnover, and transaction costs; elaborate
on the optimal rebalancing frequency; illustrate the
asymmetric factor payoff patterns and the impact of short
availability on portfolio performance; answer the question
of Ahow many stocks shoul d
review the tradeoffs of various factor weighting/portfolio
construction techniques. Last but not least, we compare
traditional active portfolio management via multi-factor
models, with the new trend of smart beta/factor portfolio
investing.
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|. Survivorship bias

Survivorship bias

Ignoring inactive companies

0 Survivorship bias is one of the common mistakes
investors tend to make. Most people are aware of the
survivorship bias, but few understand its significance.

o} Practitioners tend to backtest certain investment
strategies using only those companies that are currently
in business, meaning stocks that have left the
investment universe due to bankruptcy, delisting or
being acquired are not included in the backtesting.

# of stocks in the US and Europe that have survived until today Stocks that have survived perform better than average
3000 - 60 -
Russell 3000 index (equally weightec
2500 - 50 1 ——Survivor universe (equally weighted
2000 40 -
1500 | 30 -
1000 | 20 -
500 + 10 -
0 T T T T T T T T T T T T T 0

T T : T T T T T T T T T T
S I TSI TS F >R S G W A S SR I
o & O o ¢ W O W . NN SRR O
N oy vy MSCI Europe survivol !
p 12 | ——MSCI Europe equally weighte
600 - ) )
10 =—MSCI Europe survivor univers
500 -
8
400
6
300 -
4 4
200
2
100 o
0 . . . . . . . . . . . P \‘9« «oga S & \,0°’ (Pv N ég\ (@ SN
P HF P L IS T ES PN FNE R FE Y F S

S I ARG R OISR R N

Source: Bloombe

Deutsche Bank Yin Luo, CFA 1.212.250.8983 DBEQS.Americas@db.com



mailto:yin.luo@db.com

Survivorship bias illustrated

/

Survivorship bias leads to completely opposite conclusions

Merton distance of default factor on the Russell 3000

universe Factor exposure, the Russell 3000 universe Low volatility factor on the proper S&P 500 universe
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The impact of survivorship bias

1/3 of factors have the opposite signs with the survivorship-biased universe

Top 20 factors with the largest return differential
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ll. Look-ahead bias

Look-ahead bias

Using data that were unknown

o} It is the bias created by using information or data that “ng
were unknown or unavailable as of the time when the ﬁ’ v;
backtesting was conducted. It is probably the most ?
common bias in the backtesting.

o} An obvious example of look-ahead bias lies in
companieso6 financial statem
o} Ideally, we should use point-in-time data for all

backtesting purposes. When PIT data is not available,
we need to make reporting lag assumption.

# of days to file quarterly earnings 1 US companies # of days to file quarterly earnings 1 international companies
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Source: Bloomberg Finance LLP, Compustat, IBES, Russell, S&P, Thomson Reuters, Worldscope, Deutsche Bank Quantitative Strategy
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The importance of using PIT data

When PIT data is not available, reporting lag assumption is critical

The performance of the earnings yield factor, using non-PIT data
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